Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients
نویسندگان
چکیده
In this paper, we investigate multi-symplectic Runge-Kutta-Nyström (RKN) methods for nonlinear Schrödinger equations. Concatenating symplecitc Nyström methods in spatial direction and symplecitc Runge-Kutta methods in temporal direction for nonlinear Schrödinger equations leads to multi-symplecitc integrators, i.e. to numerical methods which preserve the multi-symplectic conservation law (MSCL), we present the corresponding discrete version of MSCL. We show that the multi-symplectic RKN methods preserve not only the global symplectic structure in time, but also local and global discrete charge conservation laws under periodic boundary conditions. Lower and higher order multi-symplectic RKN methods are utilized in numerical experiments. The errors of numerical solutions, the numerical errors of discrete energy, discrete momentum and discrete charge are exhibited. The precise conservation of discrete charge under the multi-symplectic RKN discretizaitons is attested numerically. By comparing with non-multi-symplectic methods, some numerical superiorities of the multi-symplectic RKN methods are exhibited.
منابع مشابه
Exponentially Fitted Symplectic Runge-Kutta-Nyström methods
In this work we consider symplectic Runge Kutta Nyström (SRKN) methods with three stages. We construct a fourth order SRKN with constant coefficients and a trigonometrically fitted SRKN method. We apply the new methods on the two-dimentional harmonic oscillator, the Stiefel-Bettis problem and on the computation of the eigenvalues of the Schrödinger equation.
متن کاملSymplectic Runge-Kutta-Nyström Methods with Phase-Lag Oder 8 and Infinity
In this work we consider Symplectic Runge Kutta Nyström methods with five stages. A new fourth algebraic order method with phase-lag order eight is presented. Also the symplectic Runge Kutta Nyström of Calvo and Sanz Serna with five stages and fourth order is modified to produce a phase-fitted method. We apply the new methods on several Hamiltonian systems and on the computation of the eigenval...
متن کاملNovel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrödinger Equationwith TrappedTerm
The multi-symplectic Runge-Kutta (MSRK) methods and multi-symplectic Fourier spectral (MSFS) methods will be employed to solve the fourth-order Schrödinger equations with trapped term. Using the idea of split-step numerical method and the MSRK methods, we devise a new kind of multi-symplectic integrators, which is called split-stepmulti-symplectic (SSMS)methods. The numerical experiments show t...
متن کاملExplicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations
In this paper, we study the integration of Hamiltonian wave equations whose solutions have oscillatory behaviors in time and/or space. We are mainly concerned with the research for multi-symplectic extended Runge-Kutta-Nyström (ERKN) discretizations and the corresponding discrete conservation laws. We first show that the discretizations to the Hamiltonian wave equations using two symplectic ERK...
متن کاملMulti-symplectic Runge–Kutta-type methods for Hamiltonian wave equations
The non-linear wave equation is taken as a model problem for the investigation. Different multisymplectic reformulations of the equation are discussed. Multi-symplectic Runge–Kutta methods and multi-symplectic partitioned Runge–Kutta methods are explored based on these different reformulations. Some popular and efficient multi-symplectic schemes are collected and constructed. Stability analyses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 226 شماره
صفحات -
تاریخ انتشار 2007